Amit az LTE technológiáról tudni kell

2011. november 30. szerda, 12:25 • InfotérLTE, internet, technológia, mobil, telefon, GSM, EDGE, UMTS, 2G, 3G, 4G, HSPA, WLAN, WiMAX, hálózat
Az első LTE (Long Term Evolution) rendszereket már 2009 végén beindították és 2010 folyamán számos szolgáltató tervezi a kiépítését, illetve a bevezetését, valamint több telefongyártó is megjelent már LTE képes mobil termékekkel. Sokan az LTE-vel kapcsolatosan már a negyedik generációról beszélnek, hiszen az LTE teljesen megújítja mind a rádiós átvitelt mind pedig a hálózati technológiát, szakítva többek között a GSM-ből eredő, azaz több mint 20 éves múltra visszatekintő, áramkör-kapcsolt beszédátvitellel.

Twitter megosztás
Google+ megosztás
Cikk küldése e-mailben
Cikk nyomtatása
    A GSM (2G) áttörése óta a mobil távközlés folyamatos és rendkívül gyors fejlődésben van. Míg eredetileg a GSM csak beszédre volt igazán alkalmas, az azt kiegészítő GPRS bevezetésével már adatforgalom is lehetségessé vált, melynek sebessége az EDGE nyújtotta új modulációs technológiával azóta már jelentősen megnőtt. A második generációt aztán az UMTS (3G) követte, amely a rádiós technológiát új alapokra helyezve sokkal nagyobb adatátviteli sebességet és alacsonyabb késleltetés hozott, jelentősen bővítve ezzel az elérhető szolgáltatások sorát. Az UMTS fejlődése sem állt meg ezután, a következő lépcsőfokot a HSDPA/HSUPA (együtt: HSPA) elterjedése jelentette, amely már a vezetékes adatszolgáltatáshoz mérhető sebességet és minőséget tett lehetővé. Mindezt a soron következő HSPA+ technológia jelentősen túlszárnyalja még, köszönhetően a jobb spektrális kihasználtságnak, az új modulációs technológiáknak és nem utolsósorban a többantennás kommunikációnak.
    Ennek a töretlen technológiai fejődésnek következő fejezete az LTE , melyet az UMTS hosszú távú evolúciójának szánnak. Sokan az LTE-vel kapcsolatosan már a negyedik generációról beszélnek, hiszen az LTE teljesen megújítja mind a rádiós átvitelt mind pedig a hálózati technológiát, szakítva többek között a GSM-ből eredő, azaz több mint 20 éves múltra visszatekintő, áramkörkapcsolt beszédátvitellel.

Az LTE bevezetését a következő főbb célok motiválták:
  • Nagy sebességű adatátvitel: 100 Mbit/s letöltési, illetve 50 Mbit/s feltöltési csúcssebesség, magas adatátviteli képesség akár a cellahatároknál is
  • Alacsony rádiós késleltetés: <10 ms
  • Magas spektrális hatékonyság / kihasználtság
  • Skálázható spektrális sávszélesség egészen 20 MHz-ig
  • Csomagkapcsolt kommunikációs hálózat
  • Együttműködés a meglévő 2G / 3G hálózatokkal
  • Költséghatékonyság: csökkentett komplexitás az alacsonyabb fejlesztési, telepítési ill. bővítési költségek érdekében
  • Garantált szolgáltatási minőség (QoS) támogatása
  • Mobilitás: alacsony sebességre (0-15 Km/h) optimalizált technológia, de nagyobb sebesség támogatása is fontos

Rádiós technológia

A 2. fejezetben az alábbi témák kerülnek kibontásra:
  • Lefelé (downlink) irányban OFDMA: Merőleges frekvencia osztásos többszörös hozzáférés (Orthogonal Frequency Division Multiple Access)
  • Felfelé (uplink) irányban SC-FDMA: Egyhordozós frekvencia osztásos többszörös hozzáférés (Single Carrier Frequency Division Multiple Access)
  • MIMO: Többantennás átvitel

OFDMA

    A downlink, azaz a lefelé irányú rádiós átvitel az OFDM (Orthogonal Frequency Division Multiplexing) technológián alapul, melyet a WLAN, WiMAX és DVB rendszerekben is alkalmaznak. Ellentétben a UMTS-nél használt WCDMA (egyhordozós - kódosztásos) technikával, az OFDM esetében a rendelkezésre álló spektrumot több alhordozóra, un. subcarrierre osztják fel. A subcarrierek merőlegesek egymásra, és egymástól függetlenül modulált adatot szállítanak. Az idősíkon védő intervallumot, un. cyclic prefix-et tesznek minden egyes OFDM szimbólum elé, ezzel védekezve a csatornakésleltetésből eredő interferencia ellen.



    Az OFDMA annyiban különbözik a hagyományos OFDM technológiától, hogy az nem csak időben osztja meg a rendelkezésre álló spektrumot a felhasználók között, hanem frekvenciában is, azaz minden egyes felhasználóhoz adott idő-frekvencia erőforrás rendelhető. Ez azt jelenti, hogy a bázisállomás (eNodeB) TTI-onkétt (Transmission Time Intervall - 1 ms átviteli idő intervallum) döntést hoz a rendelkezésre álló erőforrás blokkok (RB: Resource Block = 12 egymást követő subcarrier) felosztásáról a különböző felhasználói igényeknek megfelelően. A rendelkezésre álló erőforrás blokkok száma természetesen a sávszélességtől függ, amely – ellentétben az UMTS fix 5 MHz-vel – 1.4 és 20 MHz között skálázható (lehetséges értékek: 1.4, 3, 5, 10, 15 és 20 MHz).



    Az OFDM / OFDMA technológia összességében rendkívül rugalmas erőforrás gazdálkodást, hatékony spektrum kihasználást, jó zavar (pl. több utas terjedésből eredő kioltás) tűrőképességet és egyszerű vevő architektúrát eredményez.

SC-FDMA

    Az uplink, azaz felfelé irányban használt SC-FDMA alapjaiban nagyon hasonlít a OFDMA-ra. A legfontosabb különbség az, hogy az OFDMA-nál egy subcarrier csakis egy adott szimbólumhoz tartozó információt szállít, míg a SC-FDMA esetében minden egyes felhasznált subcarrier az összes átvitt szimbólum információját hordozza, így formálva egyetlen hordozóvá a felhasználóhoz rendelt subcarriereket.



    Ennek a megoldásnak alapvető előnye a kedvező csúcs-az-átlaghoz teljesítmény viszony (PAPR: Peak-to-Average Power Ratio), mely költséghatékonyabb teljesítményerősítők alkalmazását teszi lehetővé a felhasználói készülékekben.

MIMO

    A MIMO (Multiple Input Multiple Output) többantennás adatátvitelt jelent. Tipikusan 2x2-es konfigurációt használnak, azaz 2 adó és 2 vevő antenna, de elméletileg a 4 adóantennás kialakítás is elképzelhető. A többantennás kommunikáció 2 alapvető célt szolgál: egyrészt megnövelni az átvihető adatmennyiséget, másrészt javítani az átvitel minőségét.
    A legfontosabb MIMO alkalmazás a térbeli multiplexálás (Spatial Multiplex), melynek alapvető célja különböző adatfolyamok párhuzamos átvitele. Ezek az adatok származhatnak egy felhasználótól (single user MIMO / SU-MIMO), amely gyakorlatilag az adatátvitel sebességét növeli, ill. több felhasználótól (multi user MIMO / MU-MIMO) eredő adatok esetén a cella kapacitása bővül. A spatial multiplexing viszont csak akkor alkalmazható sikeresen, ha a megfelelően jók a rádiós feltételek.   



    A sebesség vagy kapacitás növelése helyett, MIMO segítségével növelhető a rádiós átvitel minősége is. Ilyen eszköz a UMTS-ből már ismert sugárzási diverzitás (transmit diversity), amely ugyanazt az adatfolyamot sugározza több antennával, javítva ezzel a rádiós csatorna jel-zaj viszonyát, és csökkentve a csillapításból eredő zavarérzékenységet. A diverzitás egy speciális alkalmazása LTE-ben az un. Beamforming, ahol a több antennából származó adatfolyamok karakterisztikáját úgy tudják alakítani, hogy azok a felhasználó térbeli helyzeténél erősítik, míg máshol kioltják egymás, így javítva a felhasználónál jelentkező teljesítményt és csökkentve a különböző felhasználókhoz tartozó nyalábok közötti interferenciát.

Hálózati architektúra

A harmadik fejezetben a következő témákról olvashat:
  • Új feladatmegosztás a hálózati elemek között
  • Több (összevont) funkcionalitás a bázisállomásban (eNodeB), hiszen a rádiós hálózatvezérlő (BSC/RNC) szerep megszűnik
  • Kizárólag csomagkapcsolt hálózati technika
  • Rendszet architektúra evolúció: SAE (System Architecture Evolution)

    Mivel az LTE szakított az áramkör-kapcsolt logikával, a hálózati felépítést csomagkapcsolt működésre optimalizálták, hogy zökkenőmentes és mindig fennálló IP kapcsolatot biztosítsanak a felhasználó készüléke (UE: User Equipment) és az adathálózat (PDN: Packet Data Network) között. Ez a változás magában foglalja mind a rádiós hozzáférés, azaz az EUTRA(N): Evolved Universal Terrestial Radio Acces (Network), mind pedig a mobil rendszer architektúra evolúcióját (SAE: System Architecture Evolution), melynek legfontosabb része az un. EPC (Evolved Packet Core) hálózat. Az EUTRA valamint a SAE együtt alkotják az LTE teljes rendszerét, amit úgy neveznek, hogy Evolved Packet System(EPS).
    Ellentétben az UMTS-el, az LTE rádiós hozzáférés csakis bázisállomások, un. eNodeB elemek hálózatából áll. Így aztán a eNodeB lát el minden rádiós feladatot, beleérve a rádiós hozzáféréssel, átvitellel, biztonsággal, mobilitással, mérésekkel és erőforrás gazdálkodással kapcsolatos teendőket. Ez gyakorlatilag azt is jelenti, hogy rádiós hálózat menedzsmentje teljesen elosztott, nincs többé központosított vezérlés (mint az eddigi GSM / UMTS hálózatokban).
    Az EPC hálózat pedig három logikai elemből épül fel. Az egyik a mobilitás vezélő (MME: Mobility Management Entity), amely az UE és a mobil hálózat közötti kommunikációt bonyolítja, és ezzel két alapvető feladatot lát el: a felhasználó és az adathálózat közötti kapcsolatot, valamint az adathordozókat (bearer) menedzseli, azaz kontrollálja ezek felépítését, lebontását, biztonságát és mobilitását.
    Minden felhasználói adat az un. kiszolgáló gatway-en (S-GW) keresztül megy át, amely a bázisállomások, illetve más rádiós hálózatok (GSM, UMTS) közötti váltáskor kapcsolódási pontként szolgál, biztosítva ezzel az adathordozók folytonosságát. Ezen kívül információkat tárol az adathordozókról, adatot pufferel és számlázási információkat is gyűjt.
    A mobil hálózatot a külvilággal pedig az adathálózati gatway (P-GW) kapcsolja össze. Legfontosabb feladatai közé tartozik a felhasználói IP címek kiosztása, adatcsomagok szűrése és garantált szolgáltatás minőség (QoS) biztosítása, valamint az adatforgalom alapú számlázás.



Protokoll architektúra

A negyedik fejezet a következő témákba nyújt betekintést:
  • Csökkentett komplexitás
  • Megosztott csatornás (shared channel) kommunikáció, nincsenek többé dedikált csatornák
  • Dinamikus erőforrás ütemezés (scheduling) uplink és downlink irányban is
  • Adaptív moduláció és csatorna kódolás
  • Hybrid ARQ (Automatic Repeat Request) újraküldési protokoll
  • 1 ms átviteli idő intervallum (TTI – Transmission Time Intervall)

    Az LTE protokoll struktúra leegyszerűsödött az UMTS-hez képest, az egyes rétegek funkcionalitása módosult és komplexitásuk jelentősen csökkent.
    A protokoll architektúra logikailag két részre bontható: a felhasználói (user plane) és a vezérlő (control plane) síkokra. A felhasználói sík az adatok továbbításáért felelős, a vezérlő sík feladata pedig a kommunikáló egységek közötti kapcsolat menedzselése jelzés (signalling) protokollok segítségével. A két sík alsó kettő protokoll rétege közös, ahol a legalsó, fizikai szint nem más mit a 3. fejezetben ismertetett rádiós közeg, melynek feladata a rádiós jelek modulálása, kódolása és továbbítása. A fizikai réteg feletti második közös szint 3 részből áll: MAC (Media Access Control), RLC (Radio Link Control) és PDCP (Packet Data Convergence Protocol). Ezek továbbítják közvetlenül a felhasználói adatokat (user plane) vagy a jelzésprotokollok üzeneteit (control plane), ahol ez utóbbi két protokollréteget jelent: RRC (Radio Resource Control) és NAS (Non Access Stratum).



    Az EUTRA protokoll architektúra talán leghangsúlyosabb rétege a MAC, melynek fő feladata a rádiós erőforrások menedzsmentje. Ide tartozik a felhasználói adatok ütemezése az idő és frekvencia síkon egyaránt, a moduláció és kódolás megválasztása a rádiós feltételeknek megfelelően, a készülékek méréseinek és teljesítményének szabályozása, valamin az adatátvitel multiplexálása, szinkronizálása és hibajavítása.
    Az RLC réteg az adatfolyamok sorrendhelyes és duplikáció mentes továbbításáért felelős, továbbá a MAC által kínált transzport blokkok méretének megfelelően feldarabolja, illetve összerakja az adatcsomagokat, és szükség esetén a hiányzó adatszegmensek újraküldését is irányítja.
    A PDCP feladatkörébe tartozik a rádiós kommunikáció biztonságának szavatolása, azaz az adatok titkosítása és az üzenetek integritásának védelme. Ezen kívül az IP csomagok fejlécének tömörítését is végzi, valamint cellaváltásoknál (handover) az adatok sorrendhelyességéért is ez a réteg felelős.
    Az jelzésprotokollok közül az RRC réteg a teljes rádiós kapcsolat vezérlését végzi. Felépíti, igény szerint átkonfigurálja és bontja a bázisállomás és a mobil terminál közötti rádiós összeköttetést, menedzseli a méréseket, cellaváltásokat (handover), valamint a rádiós jelzés- (signalling-) ill. adathordozókat (data radio bearer). Feladatai közé tartozik az alsóbb rétegek konfigurálása és a paraméterek kommunikációja a felhasználó felé, valamint az RRC szállítja transzparensen a NAS üzeneteit is.
    A NAS feladata pedig a felhasználók menedzsmentje a mobil hálózatban. Ez magába foglalja a felhasználók hitelesítését és beengedését a hálózatba, a kapcsolat titkosítását, az EPS hálózati adatszállítók felépítését (IP paraméterek), valamit az igényeknek és előfizetésnek megfelelő beállítását (QoS paraméterek), és a felhasználók mobilitásának vezérlését.

Az LTE jövője

    Az első LTE (Long Term Evolution) rendszereket már 2009 végén beindították és 2010 folyamán számos szolgáltató tervezi a kiépítését, illetve a bevezetését, valamint több telefongyártó is megjelent már LTE képes mobil termékekkel. Ez a fázis ennek ellenére még kísérletinek mondható, és a technológia elterjedése a 2011-től kezdődően várható.
    A technológiai fejlődés természetesen nem állt meg az LTE-vel kapcsolatosan, és már szabványosítás alatt van az un. LTE Advanced, amely még tovább növeli a felhasználható sávszélességet, spektrális kihasználtságot és az adatátvitel sebességét, valamint alapvetően új, pico és femtocellákon alapuló szemléletet hoz a mobil hálózati topológiák világába.


Írta: Horváth Endre